Hepatitis C Virus RNA Replication Depends on Specific Cis- and Trans-Acting Activities of Viral Nonstructural Proteins
نویسندگان
چکیده
Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.
منابع مشابه
Rubella virus nonstructural protein protease domains involved in trans- and cis-cleavage activities.
Rubella virus (RV) genomic RNA contains two large open reading frames (ORFs): a 5'-proximal ORF encoding nonstructural proteins (NSPs) that function primarily in viral RNA replication and a 3'-proximal ORF encoding the viral structural proteins. Proteolytic processing of the RV NSP ORF translation product p200 is essential for viral replication. Processing of p200 to two mature products (p150 a...
متن کاملVaricella Zoster Virus (VZV) Origin-Dependent Plasmid Replication in the Presence of the Four Overlapping Cosmids Comprising the Complete Genome of VZV
The Varicella-Zoster Virus (VZV) genome contains both cis-acting and trans-acting elements, which are important in viral DNA replication. The cis-acting elements consist of two copies of oriS, and the trans-acting elements are those genes whose products are required for virus DNA replication. It has been shown that each of the seven genes required for ori-dependent DNA synthesis of Herpes Simpl...
متن کاملBoth cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication
UNLABELLED The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess mult...
متن کاملNS5A Domain 1 and Polyprotein Cleavage Kinetics Are Critical for Induction of Double-Membrane Vesicles Associated with Hepatitis C Virus Replication
UNLABELLED Induction of membrane rearrangements in the cytoplasm of infected cells is a hallmark of positive-strand RNA viruses. These altered membranes serve as scaffolds for the assembly of viral replication factories (RFs). We have recently shown that hepatitis C virus (HCV) infection induces endoplasmic reticulum-derived double-membrane vesicles (DMVs) representing the major constituent of ...
متن کاملDistinct functions of NS5A in hepatitis C virus RNA replication uncovered by studies with the NS5A inhibitor BMS-790052.
BMS-790052, targeting nonstructural protein 5A (NS5A), is the most potent hepatitis C virus (HCV) inhibitor described to date. It is highly effective against genotype 1 replicons and also displays robust genotype 1 anti-HCV activity in the clinic (M. Gao et al., Nature 465:96-100, 2010). BMS-790052 inhibits genotype 2a JFH1 replicon cells and cell culture infectious virus with 50% effective con...
متن کامل